3D Bioplotter Research Papers

Displaying all papers by J. Li (10 results)

The addition of zinc ions to polymer-ceramic composites accelerated osteogenic differentiation of human mesenchymal stromal cells

Biomaterials Advances 2023 Volume 149, Article 213391

Critical-sized bone defects, caused by congenital disorders or trauma, are defects that will not heal spontaneously and require surgical intervention. Recent advances in biomaterial design for the treatment of such defects focus on improving their osteoinductive properties. Here, we propose a bioactive composite with high ceramic content composed of poly(ethyleneoxide terephthalate)/poly(butylene terephthalate) (1000PEOT70PBT30, PolyActive, PA) and 50 % beta-tricalcium phosphate (β-TCP) with the addition of zinc in a form of a coating on the TCP particles. Due to its essential role in bone homeostasis, we hypothesised that the addition of zinc to the polymer-ceramic composite will further enhance its osteogenic…

Magnesium oxide regulates the degradation behaviors and improves the osteogenesis of poly(lactide-co-glycolide) composite scaffolds

Composites Science and Technology 2022 Volume 222, Article 109368

Poly (lactic-co-glycolic acid) (PLGA) is a star biodegradable polymer widely studied and applied in the biomedical field. Improving the acidic microenvironment caused by its degradation products and regulating its degradation behavior are still urgent scientific and technological problems to be solved. In this study, to regulate the degradation behaviors of PLGA and improve its bioactivity, hydroxyapatite (HA) and magnesium oxide (MgO) were incorporated into PLGA substrate in different proportions and a series of 3D-printing PLGA/HA/MgO (PHM) composite porous scaffolds were prepared. Then the physicochemical properties, degradation behaviors, in vitro and in vivo biological performance of fabricated scaffolds were systematically studied.…

Three-dimensional printing of clinical scale and personalized calcium phosphate scaffolds for alveolar bone reconstruction

Dental Materials 2022 Volume 38, Issue 3, Pages 529-539

Objective Alveolar bone defects can be highly variable in their morphology and, as the defect size increases, they become more challenging to treat with currently available therapeutics and biomaterials. This investigation sought to devise a protocol for fabricating customized clinical scale and patient-specific, bioceramic scaffolds for reconstruction of large alveolar bone defects. Methods Two types of calcium phosphate (CaP)-based bioceramic scaffolds (alginate/β-TCP and hydroxyapatite/α-TCP, hereafter referred to as hybrid CaP and Osteoink™, respectively) were designed, 3D printed, and their biocompatibility with alveolar bone marrow stem cells and mechanical properties were determined. Following scaffold optimization, a workflow was developed to use…

Integrative treatment of anti-tumor/bone repair by combination of MoS2 nanosheets with 3D printed bioactive borosilicate glass scaffolds

Chemical Engineering Journal 2020 Volume 396, Article 125081

Malignant bone tumors have caused great obstacles and serious illnesses for tumor recurrence and difficulty in reconstructing and repairing large defects after tumorectomy. Additionally, long-term efficacy, satisfactory biocompatibility and excellent properties for anti-tumor agents are necessary in the biomedical field. To solve these problems, a novel idea has been proposed on building an integrative anti-tumor/bone repairing scaffold by covering photothermal therapy (PTT) composite MoS2-PLGA film on the surface of borosilicate bioactive glass (BG). In our study, the MoS2-integrated composite BG (BGM) scaffolds can rapidly and effectively elevate temperature, and they exhibited excellent photothermal stability, under 808 nm laser irradiation. Notably,…

Hierarchical patterning via dynamic sacrificial printing of stimuli-responsive hydrogels

Biofabrication 2020 Volume 12, Number 3, Article 035007

Inspired by stimuli-tailored dynamic processes that spatiotemporally create structural and functional diversity in biology, a new hierarchical patterning strategy is proposed to induce the emergence of complex multidimensional structures via dynamic sacrificial printing of stimuli-responsive hydrogels. Using thermally responsive gelatin (Gel) and pH-responsive chitosan (Chit) as proof-of-concept materials, we demonstrate that the initially printed sacrificial material (Gel/Chit-H+ hydrogel with a single gelatin network) can be converted dynamically into non-sacrificial material (Gel/Chit-H+–Citr hydrogel with gelatin and an electrostatic citrate–chitosan dual network) under stimulus cues (citrate ions). Complex hierarchical structures and functions can be created by controlling either the printing patterns of…

3D porous Ti6Al4V-beta-tricalcium phosphate scaffolds directly fabricated by additive manufacturing

Acta Biomaterialia 2021 Volume 126, Pages 496-510

3D Ti6Al4V-beta-tricalcium phosphate (TCP) hybrid scaffolds with interconnected porous network and controllable porosity and pore size were successfully produced by three-dimensional fiber deposition (3DF). The macrostructure of scaffolds was determined by the 3D design, whereas the micro- and submicron structure were derived from the Ti6Al4V powder sintering and the crystalline TCP powder, respectively. Ti6Al4V-TCP slurry was developed for 3DF by optimizing the TCP powder size, Ti6Al4V-to-TCP powder ratio and Ti6Al4V-TCP powder content. Moreover, the air pressure and fiber deposition rate were optimized. A maximum achievable ceramic content in the Ti6Al4V-TCP slurry that enables 3DF manufacturing was 10 wt%. The chemical…

A 3D printed graphene electrode device for enhanced and scalable stem cell culture, osteoinduction and tissue building

Materials & Design 2021 Volume 201, Article 109473

Bone related diseases and disorders increasingly impact human health. Electrical stimulation (ES) has been shown to promote osteogenesis and healing of bone defects. Graphene, is an electrically conductive and biocompatible material with good mechanical properties (strength with flexibility), and therefore shows significant promise as a cell-compatible electrode for ES. Graphene-based scaffolds may therefore be used for 3D cell and tissue support, including 3D osteoinduction. We have fabricated 3D graphene electrode structures to provide ES to human adipose stem cells (ADSCs). The assemblies support ADSC growth and differentiation, with ES augmenting proliferation and osteogenesis. Our findings expand our previous work on…

A novel vehicle-like drug delivery 3D printing scaffold and its applications for a rat femoral bone repairing in vitro and in vivo

International Journal of Biological Sciences 2020 Volume 16, Issue 11, Pages 1821-1832

The high surface area ratio and special structure of mesoporous bioactive glass (MBG) endow it with excellent physical adsorption of various drugs without destroying the chemical activity. Silicate 1393 bioactive glass (1393) is famous for its fantastic biodegradability and osteogenesis. Herein, we have built a novel vehicle-like drug delivery 3D printing scaffold with multiplexed drug delivery capacity by coating MBG on the surface of 1393 (1393@MBG). Furthermore, we have applied DEX and BMP-2 on the 1393@MBG scaffold to endow it with antibacterial and osteogenic properties. Results indicated that this 1393@MBG scaffold could effectively load and controlled release BMP-2, DNA and…

Surface nanogrooving of carbon microtubes

Scientific Reports 2018 Volume 8, Article 9924

Extrusion processing of carbon tubes can be problematic due to their poor interfacial interactions with polymeric matrices. Surface chemical modification of carbon tubes can be utilized to create bonding sites to form networks with polymer chains. However, chemical reactions resulting in intermolecular primary bonding limit processability of extrudate, since they cause unstable rheological behaviour, and thus decrease the stock holding time, which is determinative in extrusion. This study presents a method for the synthesis of carbon microtubes with physically modified surface area to improve the filler and matrix interfacial interactions. The key concept is the formation of a nanogrooved topography,…

Evaluation of 3D-Printed Polycaprolactone Scaffolds Coated with Freeze-Dried Platelet-Rich Plasma for Bone Regeneration

Materials 2017 Volume 10, Issue 7, Article 831

Three-dimensional printing is one of the most promising techniques for the manufacturing of scaffolds for bone tissue engineering. However, a pure scaffold is limited by its biological properties. Platelet-rich plasma (PRP) has been shown to have the potential to improve the osteogenic effect. In this study, we improved the biological properties of scaffolds by coating 3D-printed polycaprolactone (PCL) scaffolds with freeze-dried and traditionally prepared PRP, and we evaluated these scaffolds through in vitro and in vivo experiments. In vitro, we evaluated the interaction between dental pulp stem cells (DPSCs) and the scaffolds by measuring cell proliferation, alkaline phosphatase (ALP) activity,…